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Colored-noise-induced chaotic array synchronization
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The effect of a time-correlated Gaussian noise on one-dimensional arrays consisting of diffusively coupled
chaotic cells is analyzed. A resonance effect between the time scale of the chaotic attractor and the colored
Gaussian noise has been found. As well, depending on the number of cells, coupling, and noise strength, an
improvement of the synchronization or a poor synchronization between cells within the array can occur for
some values of the time correlation. These nonlinear cooperative effects are studied in terms of a linear
stability analysis around the uniform synchronized behavior.@S1063-651X~99!02109-1#

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

The behavior of nonlinear dynamical systems in the pr
ence of small perturbations and noise has been the subje
numerous and extensive studies. In particular, the dynam
of chaotic systems depends sensitively on tiny perturbat
of the initial values. Then, perturbations can be added i
controlled~control theory@1,2#! as well as uncontrolled way
as is the case in the presence of noise~noise-induced chao
@3,4#, stochastic resonance@5–8#!.

Noise can play a constructive role in the detection
weak periodic signals via a mechanism known asstochastic
resonance. In essence, stochastic resonance is a further
markable nonlinear cooperative phenomenon, in which
signal-to-noise ratio of a periodically modulated system c
be amplified by the addition of external noise. Nonline
cooperative effects between periodic and random pertu
tions may imply that incoherent noise leads to a coher
output signal~e.g., in ring lasers@9#!. Now, this effect has
been reported in a wide variety of physical systems@10–13#,
and biology@14–16#.

More recently, the presence of noise in ensembles of c
otic systems has been studied as a function of the coup
strength among systems. For coupled chaotic systems, w
Gaussian noise can be used to control spatiotemporal c
@17–20#. In particular, the termarray-enhanced stochasti
resonancewas recently introduced by Lindneret al. @21# to
describe spatiotemporal stochastic resonance in a nume
model of coupled, bistable oscillators. They derived scal
laws for the optimum noise intensities and coupling streng
resulting in an optimization of the signal-to-noise ratio as
function of the number of oscillators. As a clear example
these studies, chaotic behavior in spatially extended syst
especially in biology and physiology@22–24#, might be ame-
nable to control, as it is the case in low-dimensional chao
systems. This control eventually leads to the formation
regions whose chaotic cells are synchronized to each o
giving rise to spatial patterns or clusters that interact w
each other with time.
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On the other hand, the behavior of uncoupled chaotic s
tems under the influence of external noise has been the
ject of recent work@25–32#. The main idea behind this re
search is that uncoupled chaotic systems cannot
synchronized by means of an identical noise signal~Gauss-
ian noise of zero mean!, except for a noise with some non
zero bias.

In this paper, the role of a time-correlated Gaussian no
in diffusively coupled chaotic cells is analyzed. In rece
times, white noise has been replaced by colored noise
variety of contexts. The noise color significantly enriches
fluctuation dynamics, particularly where the characteris
correlation time of the noise is not small compared to
time scale of the system@33,34#. Laser noise problems@35#
and first passage problems@36# are some examples that hav
been shown to necessitate the use of colored noise inste
white noise. On the other hand, for nonlinear dynamical s
tems without periodic external force parametrically pe
turbed with colored noise, a nonmonotonic behavior of
coherence in the system response was observed as a fun
of the noise correlation time, while no coherence enhan
ment was measured when the noise amplitude was va
@37,38#. Our aim in this paper is to investigate the nonline
cooperative effects of noise strength, correlation time, a
length scales to control spatiotemporal chaos in coupled
rays of chaotic cells.

II. MODEL

In our simulations, a one-dimensional array, consisting
diffusively coupled chaotic cells of the Lorenz type, w
used,

ẋ j5a~yj2xj !,

ẏ j5@R1j j~ t !# xj2yj2xj zj1D~yj 111yj 2122 yj !,
~1!

żj5xj yj2bzj ,

with a, R, andb positive parameters@39#. Usual parameter
values area510, b5 8

3 , and R528. By keepinga and b
constants while varyingR, it is possible to simplify the linear
stability analysis@40# which will be useful later in the dis-
cussion. The origin is stable forR,1. At R51 the origin
2779 © 1999 The American Physical Society
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2780 PRE 60M. N. LORENZO AND V. PÉREZ-MAÑUZURI
loses stability by a supercritical pitchfork bifurcation, and
symmetric pair of attracting points is born. AtRcr524.74 the
fixed points lose stability by absorbing an unstable lim
cycle in a subcritical Hopf bifurcation and the nonlinear s
becomes a strange attractor.

In Eq. ~1!, D accounts for the coupling diffusion coeffi
cient between cells,j runs from 1 toN ~number of cells in the
array!, and j(t) is a colored Gaussian noise of zero me
whose dynamics is given by

j̇52t21 j1t21 jw~ t !. ~2!

The Ornstein-Uhlenbeck stochastic processj(t) @41# is
driven by the white Gaussian noisejw(t) with ^jw(t)&50
and ^jw(t) jw(t8)&52 A d(t2t8). The correlation function
of j(t) is an exponential function given by

^j~ t ! j~ t8!&5
A

t
expS 2ut2t8u

t D , ~3!

wheret is the correlation time,A is the noise amplitude, an
s5AA/t is the noise dispersion. In the limitt→0 the white-
noise limit jw(t) is recovered.

We emphasize here two cases; incoherent orlocal noise,
where the noise is uncorrelated from site to site, andglobal
noise, where the noise is identical at each site@42#. In this
work, noise is added to the control parameterR resulting in a
multiplicative contribution to the evolution equations. A
though we will show the existence of optimal values of co
pling strength and color noise that lead to an improvemen
to a worsening of the synchronization between chaotic ce
we expect that this behavior can also be found when nois
added to the system in a different way.

Equation~1! was numerically integrated using an explic
Euler method with a time step of 1024. Free ends~zero flux!
and periodic boundary conditions were considered. The
ponentially correlated noisej j (t) was numerically calculated
at each sitej by an integral algorithm suggested by Foxet al.
@43# instead of solving Eq.~2!. Random initial conditions for
all variables were given to each cell in the array.

In order to characterize thedegreeof synchronization be-
tween cells of the array, we introduce the following tim
averaged quantity:

K5 lim
T→`

1

T (
t51

T S 1

N21 (
j 52

N I uW j
t2uW j 21

t I D , ~4!

with uW 5(x,y,z) and i•i represents the Euclidean distanc
This function is positive defined and it is equal to zero wh
all the cells in the array are globally synchronized. AsK may
serve as a measure of the array complexity, in this conte
can be related to the Kolmogorov-Sinai entropy@44#. Nu-
merical simulations were run untilK varied less than 5%.

In the same context, in order to analyze the behavior
the array under the presence of noise, it is possible to ca
late the transverse Lyapunov exponents corresponding to
transverse perturbation to the synchronized manifold. Ne
theless, while this spectrum can be easily calculated for
array with periodic boundary conditions forced with corr
lated colored noise, this is not the case for an array with f
ends or an array consisting of cells forced with local or u
t
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correlated noise. In the Appendix, the linear stability analy
performed to calculate the transverse Lyapunov spectrum
depicted.

III. RESULTS

The main effect of a colored Gaussian noise on an ar
of diffusively coupled chaotic Lorenz systems is shown
Figs. 1 and 2. Results are shown separately for local~Fig. 1!
and global~Fig. 2! noise, as a function of the time correlatio
t, number of cells in the array, and coupling strength. F
low values of the diffusion~upper rows in Figs. 1 and 2!,
independently of the specific values, the dependence ofK on
t is equivalent for all the arrays considered; ast is increased,
a maximum ofK is observed att5tR , and for t→`, K
tends toK0 ~i.e., the value ofK obtained for the same arra
without considering the presence of noise!. The only effect
of the global or space-correlated noise in comparison to
local noise is to attenuate the curve near the maximumt
5tR . Note as well that forN520 andN5100, the maxi-
mum value ofK is approximately the same but greater th
that measured forN54. SinceK measures thedegreeof
synchronization between cells, andK2K0 is greater than
zero, the effect of noise for low values ofD is to deteriorate
the synchronization, at least within the range of values ot
neartR .

On the other hand, for high values of the couplin
strength~lower rows in Figs. 1 and 2!, the effect of the col-
ored Gaussian noise on arrays consisting of chaotic cel
the opposite to the one described above. That is, ast is
increasedK diminishes, later increases neart5tR , again it
decreases fort.tR , and finally attains a constant valu
equal toK0. As N increases, the maximum value ofK also
increases, leading to a global displacement of the curve
wards positive values~see, for example, the figure forN
5100), althoughtR was not found to depend onN. As well,
as described above, the main effect of the correlated nois
to damp and smooth the curve near the value oftR .

In the same way, the two limitst→0 and t→` are
equivalent for both cases; local and global noise. Whet
→0, the white Gaussian noise limit is recovered and ce
within the array do not become synchronized to each ot
independently of the variance of the noise@32#. Only the
coupling diffusion term allows to some extent the synch
nization among the different units in the array. Similar
whent→` the termj(t) in Eqs.~1! behaves as a constan
value different for each cell. Noise affects the strange attr
tor dynamics that becomes asymmetric, while no synchro
zation is observed between cells within the array. For h
enough noise amplitude, the main effect will be a bias
signal that will induce a regularization in the system. Th
effect is analogous to that of some chaos suppression m
ods that can achieve this result through perturbations in
system variables@45#.

The effect of the periodic boundary conditions on arra
of diffusively coupled chaotic cells forced with colore
Gaussian noise is analyzed in terms of the highest Lyapu
exponentl(q) calculated from Eq.~A3!. Figure 3 shows a
three-dimensional plot of the highest transverse Lyapu
exponentl(q,t) as a function of log10t and the reduced
wave numberq5k/N for D50.5. Note that for any value o
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FIG. 1. Dependence ofK2K0 as a function of log10t for different values of the coupling diffusion coefficientD and number of chaotic
cellsN within the array. Local or uncorrelated noise is herewith considered;j i(t)Þj j (t) ; i , j 51, . . . ,N. Parameter values:s53 and free
ends were considered in the integration of Eq.~1!.
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log10t, l(q) is symmetric with respect to the lineq51/2 as
described in the Appendix. On the other hand, for any va
of q, the behavior ofl(t) is equivalent to the results show
in Fig. 2 obtained with Eq.~4!; i.e., a maximum ofl(t)
occurs for sometR . The functionl(q,t) crosses the zero
line ~shown as a plane in Fig. 3! to become negative fo
some valuesqc and tc . The wave numberqc signals the
instability of the ring, and the lowest possible value ofN for
which thek5N qc condition can be fulfilled is fork51. As
k is an integer variable, this implies that the critical size
the ringNc is defined by the lowestN for which Nc qc>1 for
some time correlationtc . Thus, for some discrete values
qc ~see Table I!, there exists a minimum valuetc for which
l(q,t) is negative, and the dynamics of the array bifurca
from a nonsynchronized state to a synchronized one. As
scribed above forK(t), at the limit t→`, l(q,t)→l(q,t
→0).

Figure 4 illustrates the behavior ofK2K0 as a function of
the noise dispersions and time correlationt for a given
length of the array and coupling diffusion. Note that ind
pendently of the value ofs, the curve shape is kept un
changed like the ones described above, with a single p
that develops aroundt5tR ~see the profiles ofK2K0 ob-
tained for different values ofs as a function oft). The role
of s is to increase the maximum value ofK2K0 and to
make wider the peak aroundtR . Then, no stochastic reso
nance effect was found as the noise amplitude is chan
@37,38#. As s increases, larger values oft are needed in
order forK to relax towardsK0.
e

f

s
e-

-

ak
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By varying the coupling diffusion coefficient betwee
chaotic cells, the value oft that corresponds to the maximum
of K, tR , decreases with increasingD for a constant noise
dispersion as is shown in Fig. 5. ForD→0, no improvement
or worsening of the synchronization between cells was fou
for any value oft (K remains approximately constant!, in
agreement with Refs.@25–32#. Besides, the maximum valu
of K was found to linearly decrease asD increases. The sam
behavior oftR(D) for a small number of circuits in the arra
shown in Fig. 5 was found for greater values ofN.

Near the onset of resonance,tR , the dynamics of the
array could be simplified to that of a chain of linear
coupled oscillators, forced periodically with a frequen
equal totR

21 , whose dynamics is described in terms of
plane wave solution. The wave frequencyv and coupling
diffusion coefficient are related through the wave dispers
equation,v}AD/l, with l the wavelength. For small siz
arrays, it can be considered thatl is fixed by the boundary
conditions and then it remains constant. This is in agreem
with our simulations where we have found thattR}1/AD
independently of the length of the array. Obviously, the e
planation above is a simplification of the problem, since
chaotic dynamics cannot be mapped in a simple way to
of an oscillator. Nevertheless, our aim is to stress the si
larity between the classical frequency locking problem t
occurs in a chain of oscillators forced periodically and t
behavior ofK for t'tR . Here, the locking does not occu
for a single value of the frequency, but for a range of fr
quencies that gives rise to a wide behavior ofK as a function
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FIG. 2. Dependence ofK2K0 as a function of log10t for different values of the coupling diffusion coefficientD and number of chaotic
cellsN within the array. Global or space-correlated noise is herewith considered;j i(t)5j j (t) ; i , j 51, . . . ,N. Parameter values:s53 and
free ends were considered in the integration of Eq.~1!.
fur-
l

t
-

of t near the onset of resonance.
The influence of the bifurcation parameterR on the pre-

vious results is shown in Fig. 6. Since noisej(t) is added to
R in Eq. ~1!, the selected value ofR should influence the
observed dynamics the closer this value is taken to the bi
cation point atR5Rcr . Thus, from the three-dimensiona
plot of K2K0 shown in Fig. 6~a!, it is possible to note tha
asR is increased, the functionK(t) shows a global displace
l
-

FIG. 3. Three-dimensiona
plot of the highest Lyapunov ex
ponent l as a function of time
correlation log10t and the reduced
wave numberq5k/N. The func-
tion l(q,t) crosses from positive
~nonsynchronized state! to nega-
tive ~synchronized state! for some
critical valuestc and qc . Param-
eter values:s53 and D50.5.
Global noise was considered.
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FIG. 4. ~a! Three-dimensional plot ofK2K0 as a function of noise dispersions and time correlationt and~b! sections of this plot for
constant values ofs. Uncorrelated noise and periodic boundary conditions were considered. Parameter values:N520 andD52.0.
ot
rl

of

r
ue

. I

th
fo

co
th

du
t

e
oi
e

nt

lu-

ll
on-

,

ned
ment towards positive values, then deteriorating the cha
synchronization between cells. This effect is more clea
shown in the profiles shown in Fig. 6~b! for constant values
of R. Finally, Fig. 6~c! shows the nonmonotonic behavior
K2K0 as a function ofR for log10t524, when the white
Gaussian limit is recovered. The dependence oftR and the
maximum value ofK5Kmax with the bifurcation paramete
R is shown in Fig. 7. The inset shows the calculated val
of the mean oscillation periodT for a single Lorenz cell
calculated after a linear stability analysis was performed
both cases,tR and T decrease with increasing values ofR,
while Kmax increases withR.

IV. DISCUSSION

Clearly, two effects have been described;~i! a locking
between the characteristic frequency of the oscillator and
time correlation of the noise that is shown as a maximum
the functionK(t) for t5tR , and ~ii ! an improvement or a
poor synchronization between cells that depends on the
pling and noise strength, as well as on the proximity to
bifurcation pointRcr .

A. Resonant colored noise

The time-correlated Gaussian noise periodically mo
lates the attractor dynamics. A resonance effect between
chaotic attractor time scale and the noise correlation timt
should be expected, since the power spectrum of the n
cannot be considered to be flat within the frequency rang
interest,t21. The dependence ofK on the time scale of the
attractor, and the fact that the values oftR are within the
main oscillation periods of the attractor, reinforce this poi

TABLE I. Critical values ofqc , Nc , andtc for which l(q,t)
becomes negative. ForNc>4, there is no value oftc for which l is
negative.

qc Nc(k51) tc ~t.u.!

0.50 2 0.045
0.33 3 0.158
0.25 4 `
ic
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To clarify this resonance effect, the noise term in the evo
tion equation fory of the Lorenz system, Eq.~1!, has been
modified in the following way:

ẏ j5R~ t ! xj2yj2xj zj1D~yj 111yj 2122 yj !, ~5!

R~ t !5R1s̄ cosF2 p t

t8
1f j G , ~6!

where the values of the amplitudes̄ and periodt8 of the
periodic forcing are equivalent to the noise dispersions and
time correlationt in Eq. ~3!. f j is an initial random phase
which is different for each cell in the array, or equal for a
cells depending on whether local or global forcings are c
sidered.

Figures 8~a! and 8~b! show the dependence ofK2K0
with the forcing periodt8 for the modified Lorenz model
Eqs.~5! and~6!, for two different values ofD. As well as for
the time-correlated noise forcing, in this caseK also shows a

FIG. 5. Dependence of the resonant time correlationtR as a
function of the coupling diffusion coefficientD for constant noise
dispersion. The line represents a nonlinear fitting of the obtai
values oftR to the equationa01a1 /Aa21D. Uncorrelated noise
and free ends were considered. Parameter values:N54 ands53.
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maximum or a minimum value for somet8 depending on the
coupling strength. Note that due to the single and well
fined characteristic frequency of the forcing, the observ
peaks are narrower than those obtained for the colo
Gaussian noise, Fig. 1. Besides, the value oft85tR8 corre-
sponding to the maximum and minimum of the function (K
2K0)(t8) in Figs. 8~a! and 8~b! is equal to the mean oscil
lation period of a single Lorenz cell for the selected set
parameters,T50.61 t.u. The measured values oftR8 ~or
equivalentT) are greater than the corresponding values
tR , as was shown in Fig. 7 for different values of the bifu
cation parameterR. Since by definition the time correlationt

FIG. 6. ~a! Three-dimensional plot ofK2K0 as a function of
log10t and the control parameterR in Eq. ~1!, ~b! sections of this
plot for three constant values ofR, and ~c! dependence ofK2K0

with R for the limit case of white Gaussian noiset51024. Param-
eter values:N54, s53, andD52. Free ends were considered
the integration of Eq.~1!.
-
d
d

f

f

is the period of time that the values ofj(t) are correlated,
thentR must be lower thanT.

Then, although the resonance or locking between
natural frequency of the Lorenz oscillator and the time c
relation of the colored Gaussian noise can be explained
this simple model depicted above, the enhancement or w
ening of the chaotic synchronization implies a differe
mechanism.

B. Enhancement and worsening of the chaotic synchronization

Increasing the coupling strength between cells leads to
improvement of the chaotic synchronization since clus
formation ~set of synchronized cells within the array! is fa-
vored. For a small number of cells, this effect is most nota
as the number of possible different clusters diminishes
well, and thenK tends to be smaller thanK0. In Figs. 6 and
7, we showed that this behavior can be reversed asR in-
creases. The maximum value ofK2K0 was also found to
increase withR, finally leading to a poor synchronizatio
~for R.49.5, K2K0.0 at least within the neighborhood o
tR in Fig. 7!. This phenomenon can be explained in terms
anon-off intermittencyeffect. Since in Eq.~1! the bifurcation
parameterR is modulated byj(t), the stationary probability

FIG. 7. Dependence of the resonant time correlationtR ~left axis
and black squares dots fitted to a straight line! and the maximum
value ofK ~right axis and dashed line! as a function of the bifurca-
tion parameterR. The inset shows the dependence of the me
oscillation periodT of a single Lorenz equation as a function ofR.
Parameter values:N54, s53, andD52. Free ends were consid
ered in the integration of Eq.~1!.
:

FIG. 8. Dependence ofK with
the forcing periodt8 for the modi-
fied Lorenz model, Eqs.~5! and
~6!, for two different values of the
diffusion coefficient; ~a! D50.5
and~b! D52.0. Parameter values

N54 and s̄53. Free ends were
considered and f iÞf j ; i , j
51, . . . ,N.
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PRE 60 2785COLORED-NOISE-INDUCED CHAOTIC ARRAY . . .
to obtain values ofR(t)5R1j(t) smaller thanRcr where the
attractor is not chaotic is given by@41#

P„R~ t !<Rcr…5
1

sA2 p
E

2`

Rcr
expS 2

~R82R!2

2 s2 D dR8, ~7!

where clearlyP diminishes with increasingR.
Synchronization between cells is improved when the

jectories of each system become close to each other.
dynamical behavior occurs forR(t),Rcr ; the trajectories of
the attractor tend to one of the two stable fixed points of
Lorenz system, and the distance between trajectories
comes smaller ast increases (K→0). In other words, the
trajectories corresponding to the attractors of each cell in
array tend to be close to each other with a probability wh
is given by Eq.~7!; i.e., the probability to have small value
of the distanceiuW j

t2uW j 21
t i in Eq. ~4! decreases withR. Then,

the overall behavior of the functionK(t) should increase
with R as was shown forKmax in Fig. 7. Of course, this
behavior can be modified by increasing the value ofs, since
then the decreasing rate ofP with R diminishes which in fact
leads to a smaller increasing rate ofKmax with R. Then, by
controlling the values ofs andR it is possible to induce an
improvement of the synchronization between cells in the
ray.

V. CONCLUSIONS

Synchronization of linearly coupled chaotic cells has be
shown to be enhanced or worsened by multiplicative colo
Gaussian noise. This phenomenon has been explaine
terms of an on-off intermittency effect that occurs when
modulated bifurcation parameterR(t)5R1j(t) crosses the
bifurcation point atR5Rcr that determines the stability o
the Lorenz system. Optimum values of the noise and c
pling strength have been obtained for enhanced array
chronization, and the effect of increasing number of cells
the array was also discussed. The effect of local and un
related noises and the boundary conditions for solving
~1! have also been investigated.

A locking between the time correlationt and the time
scale of the attractor has been observed. Here the noise
relation time competes with the time scale of the chao
attractor to determine the realization and magnitude of
resonance phenomenon. This resonance cannot take pla
the oscillators are not coupled.

These two phenomena depend on the way cells
coupled within the array as well as on the way the no
enters in the differential equations. By adding noise to
suitable bifurcation parameter, it is possible for a given va
of the noise strength to visit regions of the phase space w
the attractor is no longer chaotic, which in fact improv
synchronization.

On the other hand, the issue of the dependence of
results on the characteristic time scale of the chaotic attra
deserves further comments. Those chaotic systems
longer time scales clearly need higher correlation times
order to achieve a resonance effect like the one describe
-
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this paper. Nevertheless, ast is increased, for a constan
value ofs, the effectiveamplitude of the noiseA5t s2 in-
creases@see Eq.~3!#, which in fact suppresses the resonan
effect as the attractor turns out to be completely conta
nated by noise. This is the case for other systems such a
Rossler model or the Hindsmarsch-Rose neuronal attrac
among others.

Finally, one might speculate that the different behav
observed for weak and strong coupling among cells when
system is parametrically perturbed with time-correlated no
of low intensity could help in the laboratory, for example,
get an idea of the coupling and synchronization strength
neural networks involved in hippocampal epilepsy@46#.
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APPENDIX: TRANSVERSE LYAPUNOV SPECTRUM

The effect of a colored noise on the chaotic synchroni
tion of a ring consisting of chaotic Lorenz cells can be ch
acterized by performing a linear stability analysis of t
small deviations around the sychronized state@47#. Thus, if
one considers a ring withN oscillators of dimensionm the
linear analysis of small perturbations will yield

ḋx5H dx ~A1!

for the differences between the variables of contiguous
cillators dx, and where the Jacobian matrixH of dimension
(N m)3(N m) hasN blocks of dimensionm3m, that have
the same form as the linearized matrix for a single cell@48#,
and a number of off-block-diagonal terms arising from co
pling. The most convenient form of analyzing such a sett
is through the use of the discrete Fourier transform, due
the circulant structure of matrixH @47,48#. What one obtains
is that the original problem~A1! becomes uncoupled in
terms of the Fourier transformh of the differencesdx as
follows:

ḣ (k)5C(k) h (k), ~A2!

where C is the Fourier transform of H, h (k)

5(1/N)( j 50
N21dxje

2p i jk /N is the Fourier transform ofdx, and
the C(k) matrices take the form

C(k)5S 2a a 0

R1j~ t !2z 2112D~ck21! 2x

y x 2b
D ,

~A3!

with ck5cos(2p k/N) and k50, . . . ,(N21) the Fourier
modes. Here, global or space-correlated noisej(t) has been
used in the calculations in order to have a circulant struct
for the matrixH in Eq. ~A1!.
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The k50 Fourier mode represents the uniform chao
synchronized state of the ring, and the stability of this st
can be characterized by analyzing the transverse spect
corresponding to Fourier modes withkÞ0. As the system of
Eqs. ~1! is nonlinear, theC(k) matrices have nonconstan
chaotically varying, coefficients. Thus, the stability is mo
conveniently analyzed through the corresponding Lyapu
exponents calculated from theC(k) matrices~A3!, yielding
the transverse Lyapunov spectrum~TLS! @47#. The uniform
modek50 will be stable whenever this spectrum is neg
tive. An instability will arise in the moment in which som
transverse Lyapunov exponent becomes positive. Instea
determining the transverse Lyapunov exponent for e
couple (k,N), a more practical procedure is to define t
reduced wave numberq5k/N as a continuous variable in th
range@0,1#. The highest transverse Lyapunov exponentl(q)
n,

v.

p.

tt

d

i-

,

ev

d

ce

n

e
m,

v

-

of
h

as a function ofq may allow one to characterize the stabili
of the uniform synchronized state in a convenient way.
interesting remark is thatl(q) should be symmetric with
respect to the lineq51/2 since for a givenN, C(k) and
C(N2k) are the same matrices (ck5cN2k), implying the same
property for their spectra of eigenvalues.

The functionl(q) is obtained by using the procedure
Wolf et al. @49#. The transverse Lyapunov exponents a
calculated for each wave numberq from the C(k) matrices
~A3!, where the nonconstant coefficients are obtained fr
the integration of Eq.~1! without diffusive coupling. Be-
sides, the colored noisej(t) in Eqs.~1! and~A3! is the same
as global noise is being considered. Another important po
to notice is that asc051, the Lyapunov exponents corre
sponding to the uniform modek5q50 are identical to those
of the isolated~uncoupled! chaotic system forced by th
noisej(t).
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@42# V. Pérez-Muñuzuri and M.N. Lorenzo, Int. J. Bifurcation

Chaos Appl. Sci. Eng.~to be published!.
@43# R.F. Fox, I.R. Gatland, R. Roy, and G. Vemuri, Phys. Rev.

38, 5938~1988!.
@44# G. Benettin, L. Galgani, and J.M. Strelcyn, Phys. Rev. A14,

2338 ~1976!.
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